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Abstract

We suggest two economically plausible alternatives to the Lovász-Shapley value for non-
negatively weighted TU games (Casajus and Wiese, 2017. Int. J. Game Theory 46 , 295�
310), the dual Lovász-Shapley value and the Shapley2 value. Whereas the former is based
on the Lovász extension operator for TU games (Lovász, 1983. Mathematical Programming:
The State of the Art, Springer, 235�256; Algaba et al., 2004. Theory Decis. 56, 229�238.),
the latter two are based on the dual Lovász extension operator and the Shapley extension
operator (Casajus and Kramm, 2021. Discrete Appl. Math. 294, 224�232), respectively.
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1. Introduction

The Shapley value (Shapley, 1953b) probably is the most eminent (single-valued) solution
concept for �nite cooperative games with transferable utility (TU games). Several weighted
generalizations of the Shapley value have been suggested. Shapley (1953a) already suggests
the positively weighted Shapley values for TU games that are enriched with positive weights
for the players. Kalai and Samet (1987) generalize the positively weighted Shapley value to
weight systems, where players are allowed to have zero weights in some sense. Both classes of
solutions are e¢ cient, i.e., the players�payo¤s sum up to the worth generated by the grand
coalition. First, this indicates that the grand coalition is considered to be the productive
unit. Second, weights do not a¤ect the generation of worth. That is, weights re�ect the
players�characteristics such as bargaining skills or responsibilities.
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Casajus and Wiese (2017) suggest the Lovász-Shapley value for non-negatively weighted
TU games, that is, TU games that are enriched with non-negative weights for the players. Its
intended interpretation is as follows. Players stand for types of agents in a population and the
players�weights for their respective subpopulation sizes. This interpretation is supported by
showing that the l payo¤s for the Lovász-Shapley value can be obtained from in�nite games
in which the population of agents is modelled explicitly. In particular, the Lovász extension
operator (Lovász, 1983; Algaba et al., 2004) is used to construct vector measure games
(see for example Neyman, 2002, Section 3) for any non-negatively weighted TU game. In
these games, the payo¤of the subpopulation of agents of a particular type under the Mertens
value (Mertens, 1988) coincides with the payo¤ of this type in the underlying non-negatively
weighted TU game under the Lovász-Shapley value. Moreover, the types�payo¤s sum up to
the worth generated by their weights in the Lovász extension of the TU game. That is, the
weights a¤ect the worth generated by and distributed among the players.
Interpreting the types�payo¤s under the Lovász-Shapley value as the �tness of the type

subpopulations, Casajus et al. (2020) derive replicator dynamics from TU games and study
the asymptotic stability of populations. Their stability results crucially depend on the
technology embodied in the Lovász extension operator, the minimum operator, used to
de�ne and construct the Lovász-Shapley value. Later on, Casajus (2021) justi�es the use of
the Lovász extension operator by showing that it is the unique (proper) extension operator
that satis�es some economically plausible properties. Moreover, he considers alternative CES
(constant elasticity of substitution) technologies to construct extension operators. Only two
of these lead to (weak) extensions that also satisfy these economically plausible properties,
the maximum operator and the average operator. Casajus and Kramm (2021) introduce and
characterize the dual Lovász extension operator and the Shapley extension operator based
on the two operators, respectively.
In this paper, we employ the dual Lovász extension operator and the Shapley extension

operator instead of the Lovász extension operator to construct vector measure games anal-
ogous to those mentioned above. The payo¤s of the type subpopulations in these games
under der Mertens value or the Aumann-Shapley value (Aumann and Shapley, 1974) give
rise to the dual Lovász-Shapley value (Equation 19 and Theorem 5) and the Shapley2 value
(Equation 24 and Theorem 10), respectively. We axiomatically characterize both solutions
in a similar fashion as Casajus and Wiese (2017) characterize the Lovász-Shapley value
(Theorems 6 and 11).
This paper is organized as follows. In the second section, we provide basic de�nitions and

notation. In the third section, we survey the Lovász-Shapley value. In the fourth section,
we introduce the dual Lovász-Shapley value. In the �fth section, we introduce the Shapley2

value. Some remarks conclude the paper. The Appendix contains all proofs.

2. Basic de�nitions and notation

2.1. Finite games

A TU game for a non-empty and �nite player set N is given by a coalition function
v : 2N ! R, v (;) = 0; where 2N denotes the power set of N . Subsets of N are called
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coalitions; v (S) is called the worth of coalition S. The set of all games for N is denoted
by V: In the following, we refer to the members of V as games. A coalition C � N
is called a carrier of v 2 V; if v (S) = v (S \ C) for all S � N: A coalition P � N
is called a partnership in v 2 V if we have v (S [ T ) = v (T ) for all S � N n P and
T ( N n P (Kalai and Samet, 1987). Players i; j 2 N are called symmetric in v 2 V; if
v (S [ fig) = v (S [ fjg) for all S � N n fi; jg : Player i 2 N is called a null player in
v 2 V; if v (S [ fig) = v (S) for all S � N n fig :
For v; w 2 V; and � 2 R, the games v +w 2 V and � � v 2 V are given by (v + w) (S) =

v (S) + w (S) and (� � v) (S) = � � v (S) for all S � N: For v 2 V; its dual v� 2 V is given
by v� (S) = v (N) � v (N n S) : The null game 0 2 V is given by 0 (S) = 0 for all S � N:
For T � N; T 6= ;; the game uT 2 V given by uT (S) = 1 if T � S and uT (S) = 0 otherwise
is called a unanimity game. Any v 2 V can be uniquely represented by unanimity games.
In particular, we have

v =
X

T�N :T 6=;

�T (v) � uT ; (1)

where the coe¢ cients �T (v) are known as the Harsanyi dividends (Harsanyi, 1959) and can
be determined recursively by

�T (v) := v (T )�
X

S(T :S 6=;

�S (v) : (2)

A rank order for N is a bijection � : N ! f1; 2; : : : ; jN jg with the interpretation that
i is the � (i)th player in �; the set of rank orders of N is denoted by R: The set of players
before i in � is denoted by Bi (�) = f` 2 N : � (`) < � (i)g : The marginal contribution of
i in � and v is denoted by

MCvi (�) := v (Bi (�) [ fig)� v (Bi (�)) : (3)

A game v 2 V is called monotonic if MCvi (�) � 0 for all � 2 R and i 2 N:
A solution (value) for V is a mapping ' : V ! RN assigning a payo¤ 'i (v) to any

player i 2 N in any game v 2 V: The Shapley value (Shapley, 1953b), Sh, is given by

Shi (v) :=
X
�2R

1

jRj �MC
v
i (�) =

X
T�N :i2T

�T (v)

jT j for all v 2 V and i 2 N: (4)

Let E :=
�
f : RN+ ! R

	
; the members of RN+ are called resource vectors; the members

of E are called resource games for N: The set E is a linear space on the reals in the
obvious sense. For all f; g 2 E and � 2 R; the resource games f + g and � � f are given
by (f + g) (s) = f (s) + g (s) and (� � f) (s) = � � f (s) for all s 2 RN+ ; respectively. An
extension operator is a mapping E : V! E; v 7! Ev that is linear and its extensions are
positively homogenous; Ev is called the extension of v: An extension operator in the sense
of Algaba et al. (2004) additionally satis�es an extension property. We call such extension
operators proper.
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The Lovász extension operator (Lovász, 1983; Algaba et al., 2004) L : V ! E;
v 7! Lv for all v 2 V can be expressed in terms of Harsanyi dividends Algaba et al. (2004,
Theorem 5). For all v 2 V, we have

Lv (s) :=
X

T�N :T 6=;

minT (s) � �T (v) for all s 2 RN+ ; (5)

where
minT (s) := mini2T si for all s 2 RN+ : (6)

Casajus and Wiese (2017, Equations 10 and 11) express the Lovász extensions in terms
marginal contributions. For s 2 RN+ ; let

R (s) := f� 2 R j � (i) < � (j) for all i; j 2 N with si > sjg ; (7)

i.e., R (s) contains those rank orders for which players with a greater entry in s come before
players with a smaller entry. For all v 2 V, we have

Lv (s) =
X
i2N

si �MCvi (�) for all s 2 RN+ and � 2 R (s) : (8)

2.2. In�nite games1

The space of players is a measurable space (I; C) that is isomorphic to ([0; 1] ;B) ;
where B stands for the Borel subsets of [0; 1] : Members of I and C are called players and
coalitions, respectively. An (in�nite) game is a mapping v : C ! R such that v (;) = 0: A
game is �nitely additive if v (S [ T ) = v (S)+ v (T ) for all S; T 2 C; S \T = ;: A game is
monotonic if v (S) � v (T ) for all S; T 2 C; S � T: A game is of bounded variation if it
is the di¤erence of two monotonic games. Let FA and BV denote the real linear spaces of
�nitely additive games and of games of bounded variation, respectively. We have FA � BV:
For any non-empty and �nite set N; let 0N 2 RN and 1N 2 RN be given by (0N)i = 0

and (1N)i = 1 for all i 2 N: Moreover, for any vector � = (�i)i2N of measures �i on (I; C),
let R (�) � RN denote the range of �: A game v is a vector measure game if it can be
written as v = f ��; where � = (�i)i2N is a vector of measures on (I; C) for some non-empty
and �nite set N and f : R (�)! R is such that f (0N) = 0:
An automorphism of (I; C) is a measurable bijective mapping � : I ! I such that ��1

is measurable. Let G denote the group of automorphisms of (I; C) : Each � 2 G induces a
linear mapping �� : BV ! BV given by v 7! ��v and (��v) (S) = v (�S) for all S 2 C:
A set of games Q � BV is called symmetric if ��Q = Q for all � 2 G: For any set of
games Q � BV; let Q+ denote its subset of monotonic games. For Q � BV; a mapping
' : Q! BV is called positive if ' (Q+) � BV +; symmetric if for every � 2 G and v 2 Q;
��v 2 Q implies ' (��v) = �� ('v) ; and e¢ cient if for every v 2 Q, ('v) (I) = v (I) :

1De�nitions and notation in this section closely follow Neyman (2002, Sections 3, 7, and 8) and Casajus
and Wiese (2017, Section 2.2).
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A distribution of payo¤s is represented by a �nitely additive game. A value on a sym-
metric subset Q of BV is a linear mapping ' : Q ! FA that is symmetric, positive, and
e¢ cient.
The Aumann-Shapley value (Aumann and Shapley, 1974), AS; is the unique value on

the linear span of vector measure games v = f � � for which f is continuously di¤erentiable
and �i is a non-atomic with �i (I) > 0 for all i 2 N ; it is given by the following diagonal
formula (Aumann and Shapley, 1974, Theorem B; Neyman, 2002, pp. 2141),

AS (f � �) (C) =
X
i2N

�
i
(C) �

Z 1

0

@f

@xi

����
t��(I)

dt for all C 2 C: (9)

TheMertens value (Mertens, 1988),Me; is the unique value on the linear span of vector
measure games f � � for which � is a vector of mutually singular non-atomic probability
measures and f is continuous and piecewise linear; it is given by the diagonal formula below
(Neyman, 2002, Section 8; Haimanko, 2001).
Let �MN

` denote the linear space of continuous and piecewise linear functions f : [0; 1]
N !

R such that f (0N) = 0: For f 2 �MN
` ; let fy (x) denote the directional derivative of f at

x 2 (0; 1)N in the direction of y 2 RN n f0Ng : Moreover, for �xed x 2 (0; 1)N ; let

@f (x; y; z) := lim
"#0

fy+"�z (x)� fy (x)
"

(10)

denote the directional derivative of the mapping y 7! fy (x) at y 2 RN in the direction of
z 2 RN n f0Ng and @f (x; y;0N) = 0. For any vector � of mutually singular non-atomic
probability measures and f 2 �MN

` ; we have

Me (f � �) (C) =
Z 1

0

@f (t � 1N ;Y ;� (C)) dt for all C 2 C; (11)

where Y = (Yi)i2N is a vector of independent random variables, each with the standard
Cauchy distribution.

3. The Lovász-Shapley value2

In this section, we provide a survey on the Lovász-Shapley value Casajus and Wiese
(2017). A non-negatively weighted game for N is a pair (v; s) 2 V � RN+ : In view of
the intended interpretation, we refer to players as types. A non-negatively weighted
solution for N is a mapping ' : V� RN+ ! RN : The Lovász-Shapley value, LS, is given
by

LSi (v; s) := jR (s)j�1 �
X
�2R(s)

si �MCvi (�) for all v 2 V; s 2 RN+ ; and i 2 N (12)

2The survey in this section closely follows Casajus and Wiese (2017).
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or

LSi (v; s) = si �
X

T�N :i2argminT (s)

�T (v)

jargminT (s)j
for all v 2 V, s 2 RN+ , and i 2 N; (13)

where
argminT (s) := fi 2 T j si = minT (s)g for all s 2 RN+ : (14)

At its very origin, the Lovász-Shapley value has been de�ned by in�nite games. For an
extension operator E : V ! E; s 2 RN+ ; and v 2 V; we consider associated vector measure
games Ev � �s; where �s = (�si )i2N is a vector measure with the following properties:
D1 For all i 2 N; �si is a non-atomic measure on (I; C) :
There are Ai 2 C, i 2 N with the following properties:

D2 For all i; j 2 N; i 6= j; we have Ai \ Aj = ;:
D3 For all i 2 N and C 2 C; we have �si (C) = �si (Ai \ C) :
D4 For all i 2 N; we have �si (Ai) = si.
The intended interpretation of the game Ev � �s is the following: The player set I

represents the population of all agents and C all their possible coalitions. The vector measure
�s indicates how many agents of the di¤erent types are in a coalition. Condition D1 implies
that there are no �big� agents. Coalition Ai contains only (D2) and all (D3) agents of
type i; where the size of the subpopulation of type i is si (D4). The extension operator
E determines the worth generated by a coalition C based on the type subpopulation sizes.
Note that we have �s (I) = s and therefore Ev � �s (I) = Ev (s) :
Using to Lovász extension operator and applying the Mertens value to the vector measure

games associated with a non-negatively weighted TU game, one obtains the types�Lovász-
Shapley payo¤s in this non-negatively weighted TU game as the Mertens payo¤s of their
type populations in the associated vector measure game.

Theorem 1 (Casajus and Wiese, 2017). For all v 2 V; s 2 RN+ ; and i 2 N; we have
LSi (v; s) = Me (Lv � �s) (Ai) where Lv � �s is a vector measure game associated with v and
s that satis�es properties D1, D2, D3, and D4.

Casajus and Wiese (2017) also provide an axiomatic characterization of the Lovász-
Shapley value involving four properties of non-negatively weighted solutions.

Lovász e¢ ciency, LE. For all v 2 V and s 2 RN+ ; we have
P

i2N 'i (v; s) = Lv (s) :

Lovász e¢ ciency determines how the type populations cooperate and produce worth.
In particular, the minimum operators in (5) and (14) indicate that scarce types limit the
generation of worth. Moreover, Lovász e¢ ciency requires the total worth generated to be
distributed among the types.

Competition within partnerships, CP. For all v 2 V, s 2 RN+ , S � N; and i; j 2 S such
that S is a partnership for v and si > sj; we have 'i (v; s) = 0:
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This property is intended to be imposed together with Lovász e¢ ciency under which
scarce types limit the generation of worth. Within a partnership, players are only jointly
productive. That is, either all of them are involved or not involved in any creation of gains
from cooperation. Hence, competitive remuneration of types should result in non-scarce
types obtaining a zero payo¤.

Weak symmetry, S�. For all v 2 V; i; j 2 N; and s 2 RN+ such that i and j are symmetric
in v and si = sj; we have 'i (v; s) = 'j (v; s) :

Symmetric types are equally productive in a the TU game. Hence, they should be
rewarded equally when their agent subpopulations have the same size.

Strong monotonicity in the game, Mo. (Young, 1985). For all v; w 2 V and i 2 N such
that v (S [ fig)�v (S) � w (S [ fig)�w (S) for all S � N nfig ; we have 'i (v; s) � 'i (w; s)
for all s 2 RN+ :
Strong monotonicity requires the types�payo¤s to re�ect their productivity in the TU game.

Theorem 2 (Casajus and Wiese, 2017). The Lovász-Shapley value is the unique non-
negatively weighted solution that satis�es Lovász e¢ ciency (LE), weak symmetry (S�), the
competition within partnerships property (CP), and strong monotonicity in the game (Mo).

4. The dual Lovász-Shapley value

Casajus and Kramm (2021) advocate and motivate the dual Lovász extension oper-
ator L� : V! E that is given by

L�v (s) :=
X

T�N :T 6=;

maxT (s) � �T (v) for all v 2 V and s 2 RN+ ; (15)

where
maxT (s) := maxi2T si for all s 2 RN+ ; (16)

or equivalently by

L�v (s) =
X
i2N

si �MCvi (�) for all � 2 R� (s) ; (17)

where
R� (s) := f� 2 R j � (i) < � (j) for all i; j 2 N with si < sjg : (18)

Its relation to the Lovász extension operator and justi�cation for its name is given by the
following proposition.

Proposition 3 (Casajus and Kramm, 2021). For all v 2 V; we have L�v = Lv�:
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Using the dual Lovász extension operator in the vector measure games introduced in
Section 3, one obtains the non-negatively weighted solution LS� given by

LS�i (v; s) := Me (L
�v � �s) (Ai) for all v 2 V and s 2 RN+ ; (19)

where L�v � �s is a vector measure game associated with v and s that satis�es properties
D1, D2, D3, and D4. As the diagonal formula (11) for the Mertens value indicates and
which is shown later on, it is well-de�ned, that is, it does not depend on the choices made in
the construction of the vector measure games L�v ��s. We call this non-negatively weighted
solution the dual Lovász-Shapley value. The �dual Lovász�part of this name refers to
the fact that we use the dual Lovász extension operator in its de�nition. The �Shapley�
part refers to the fact that we use a generalization of the Shapley value to in�nite games,
the Mertens value.
Theorem 1, Proposition 4, and (19) imply the following relation between the Lovász-

Shapley value and the dual Lovász-Shapley value, which adds to the justi�cation of the
�dual�in its name.

Proposition 4. For (20) and (21), we have LS� (v; s) = LS (v�; s) for all v 2 V and s 2 RN+ :

The next theorem shows that the dual Lovász-Shapley value is well-de�ned and expresses
the dual Lovász-Shapley value directly in terms of the non-negatively weighted games. Its
proof is referred to Appendix A.

Theorem 5. For all v 2 V; s 2 RN+ ; and i 2 N; we have

LS�i (v; s) = jR� (s)j
�1 �

X
�2R�(s)

si �MCvi (�) (20)

and

LS�i (v; s) = si �
X

T�N :i2argmaxT (s)

�T (v)

jargmaxT (s)j
; (21)

where
argmaxT (s) := fi 2 T j si = maxT (s)g for all s 2 RN+ : (22)

The dual Lovász-Shapley value can be characterized analogously to the Lovász-Shapley
value (Theorem 2). Instead of Lovász e¢ ciency and the competition within partnerships
property, one employs dual versions of these properties.

Dual Lovász e¢ ciency, LE�. For all v 2 V and s 2 RN+ ; we have
P

i2N 'i (v; s) = L
�v (s) :

Dual Lovász e¢ ciency determines how the type populations cooperate and produce
worth. In particular, the maximum operators in (21) and (22) indicate that abundant
types limit the generation of worth. Moreover, dual Lovász e¢ ciency requires the total
worth generated to be distributed among the types.
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Dual competition within partnerships, CP�. For all v 2 V, s 2 RN+ , S � N; and
i; j 2 S such that S is a partnership for v and si > sj; we have 'j (v; s) = 0:
This property is intended to be imposed together with dual Lovász e¢ ciency under which

abundant types limit the generation of worth. Within a partnership, players are only jointly
productive. That is, either all of them are involved or not involved in any creation of gains
from cooperation. Hence, competitive remuneration of types should result non-abundant
types to obtain a zero payo¤.

Theorem 6. The dual Lovász-Shapley value is the unique non-negatively weighted solution
that satis�es dual Lovász e¢ ciency (LE�), weak symmetry (S�), the dual competition within
partnerships property (CP�), and strong monotonicity in the game (Mo).

The proof of the theorem is referred to Appendix B.3 This characterization of dual Lovász-
Shapley value is non-redundant for jN j > 1: The proof of this claim is referred to Appendix
C.
The following remarks provide some basic properties of the dual Lovász-Shapley value

that are rather immediate from its formulas (20) or (21).

Remark 7. The dual Lovász-Shapley value is a generalization of the Shapley value. For
s 2 RN+ such that si = 1 for all i 2 N; we have LS� (v; s) = Sh (v) for all v 2 V:

Remark 8. The dual Lovász-Shapley value is not additive in the weight vector, but posi-
tively homogenous. Moreover, it is continuous in the game but not in the weights.

Remark 9. The dual Lovász-Shapley value can be expressed in a particularly simple way
for generic weight vectors, that is, any two players have di¤erent weights. For � 2 R; set

RN+
�
(�) :=

�
s 2 RN+ j for all i; j 2 N; � (i) < � (j) implies si < sj

	
:

Then, we have
LS�i (v; s) = si �MCvi (�)

for all � 2 R; v 2 V; i 2 N; and s 2 RN+
�
(�) :

3One easily checks that strong monotonicity in the game can be replaced by a weaker requirement in
Theorem 6, marginality in the game: For all v; w 2 V; i 2 N; and s 2 RN+ such that v (S [ (i)) � v (S) =
w (S [ (i))�w (S) for all S � N n fig ; we have 'i (v; s) = 'i (w; s) : For T � N; T 6= ;; the coalition T is a
partnership in uT : Using this fact, it is straightforward to show that strong monotonicity in the game can
be replaced by additivity in the game and the null player property in Theorem 6. Additivity in the game:
For all v; w 2 V and s 2 RN+ ; we have ' (v + w; s) = ' (v; s) + ' (w; s) : Null player property: For all v 2 V;
i 2 N; and s 2 RN+ such that i is a null player in v; we have 'i (v; s) = 0:
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5. The Shapley2 value

Casajus and Kramm (2021) advocate and motivate the Shapley extension operator
S : V! E that is given by

Sv (s) :=
X

T�N :T 6=;

�P
`2T s`

jT j

�
� �T (v) =

X
i2N

si � Shi (v) for all v 2 V and s 2 RN+ : (23)

Using the Shapley extension operator in the vector measure games introduced in Sec-
tion 3, one obtains the non-negatively weighted solution SS given by

SSi (v; s) := AS (Sv � �s) (Ai) for all v 2 V and s 2 RN+ ; (24)

where Sv ��s is a vector measure game associated with v and s that satis�es properties D1,
D2, D3, and D4. AS the diagonal formula (9) for the Aumann-Shapley value indicates and
which is shown later on, it is well-de�ned, that is, it does not depend on the choices made in
the construction of the vector measure games Sv � �s. We call this non-negatively weighted
solution the Shapley2 value, where the power of two refers to both to the fact that we use
the Shapley extension operator in its de�nition and that we also use a generalization of the
Shapley value to in�nite games, the Aumann-Shapley value. This is re�ected by the symbol
we use to represent it, SS. The next theorem shows that the Shapley2 value is well-de�ned
and expresses the Shapley2 value directly in terms of the non-negatively weighted games.
Its proof is referred to Appendix D.

Theorem 10. For all v 2 V; s 2 RN+ ; and i 2 N; we have

SSi (v; s) = si � Shi (v) : (25)

The Shapley2 value can be characterized analogously to Lovász-Shapley value (Theo-
rem 2) and the dual Lovász-Shapley value (Theorem 6).

Shapley e¢ ciency, SE. For all v 2 V and s 2 RN+ ; we have
P

i2N 'i (v; s) = Sv (s) :

Shapley e¢ ciency determines how the type populations cooperate and produce worth.
Moreover, Shapley e¢ ciency requires the total worth generated to be distributed among the
types.

Proportionality within partnerships, PP. For all v 2 V, s 2 RN+ , S � N; and i; j 2 S
such that S is a partnership for v; we have 'i (v; s) � sj = 'j (v; s) � si:
This property is intended to be imposed together with Shapley e¢ ciency under which the

generation of worth is proportional to the types weights. Within a partnership, players are
only jointly productive. Hence, competitive remuneration of types should result in payo¤s
proportional to types�weights.

Theorem 11. The Shapley2 value is the unique non-negatively weighted solution that satis-
�es Shapley e¢ ciency (SE), weak symmetry (S�), proportionality within partnerships (PP),
and strong monotonicity in the game (Mo).

10



The proof of the theorem is referred to Appendix E.4 This characterization of Shapley2

value is non-redundant for jN j > 1: The proof of this claim is referred to Appendix F.
The following remarks provide some basic properties of the Shapley2 value that are

rather immediate from its formula (25) and well-known properties of the Shapley value for
TU games.

Remark 12. The Shapley2 value is a generalization of the Shapley value. For s 2 RN+ such
that si = 1 for all i 2 N; we have SS (v; s) = Sh (v) for all v 2 V:

Remark 13. The Shapley2 value is both additive and positively homogenous in the weight
vector. Moreover, it is continuous both in the game and in the weights.

6. Concluding remarks

In this paper, we advocated two economically reasonable alternatives to the Lovász-
Shapley value for non-negatively weighted TU games, the dual Lovász-Shapley value and
the Shapley2 value. These could be used to derive replicator dynamics from TU games and
to generate stability results in the spirit of Casajus et al. (2020).
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Appendix A. Proof of Theorem 5

We �rst show that (the right-hand sides of) (20) and (21) coincide. Both are linear in
the game. Moreover, the duality mapping V ! V, v 7! v� also is linear. Hence, it su¢ ces
to show the claim for unanimity games. Let T � N; T 6= ;, s 2 RN+ , and i 2 N: For uT and
� 2 R� (s), all marginal contributions are zero except that of the last player from T in �;
which is one. By (18), this last player is a member of argmaxT s: Hence, we obtain

LS�i (uT ; s)
(20)
=

� maxT s
jargmaxT sj

; i 2 argmaxT s
0; i 2 N n argmaxT s

(21)
= LS�i (uT ; s) ; (A.1)

and we are done.
Remains to show

Me (L�v � �s) (Ai) = si �
X

T�N :i2argmaxT (s)

�T (v)

jargmaxT (s)j
(A.2)

4One easily checks that strong monotonicity in the game can be replaced with marginalityin the game
or additivity in the game and the null player property in Theorem 11 (see Footnote 3).
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for all v 2 V; s 2 RN+ ; and i 2 N and all L�v � �s and all vector measure games associated
with v and s that satisfy propertiesD1, D2, D3, andD4. Whereas not being di¤erentiable,
the dual Lovász extensions are piecewise linear. Hence, the diagonal formula for the Mertens
value (11) applies to the vector measure games in (19). In order to prove (A.2), one only
needs to slightly adjust the proof of Casajus and Wiese (2017, Theorem 8). It is not di¢ cult
to check that the proof runs through smoothly when one replaces the operators minT and
argminT with maxT and argmax T ; T � N; T 6= ; and adjusts the reasoning accordingly.

Appendix B. Proof of Theorem 6

In the following, one uses the formulas for LS� from Theorem 1. By (15), (16), (21), and
(22), LS� satis�es LE�. By (20), LS� satis�esMo. For the rest of the proof, one only needs
to slightly adjust the proof of Casajus and Wiese (2017, Theorem 1). It is not di¢ cult to
check that the proof runs through smoothly when one replaces the operators argminT with
argmaxT ; T � N; T 6= ; and adjusts the reasoning accordingly.

Appendix C. Non-redundance in Theorem 6

In order to prove this claim, one only needs to slightly adjust the proof of non-redundancy
in Casajus and Wiese (2017, Theorem 1). It is not di¢ cult to check that the proof runs
through smoothly when one replaces the operators minT and argminT with maxT and
argmax T ; T � N; T 6= ;; L with L�; R (s) with R� (s), and adjusts the reasoning ac-
cordingly.

Appendix D. Proof of Theorem 10

Since the Shapley extensions are di¤erentiable, the diagonal formula for the Aumann-
Shapley value (9) applies to the vector measure games in (24). Moreover, the Shapley
extensions Sv; v 2 V are linear. Hence, it su¢ ces to show the claim for unanimity games.
Let T � N; T 6= ;; s 2 RN+ ; i 2 T; and the vector measure �s be as in the theorem. We
obtain

SSi (uT ; s)
(24)
= AS (SuT � �s) (Ai)
(9)
=
X
i2N

�s
i
(Ai) �

Z 1

0

@SuT
@xi

����
t��s(I)

dt

D2,D3,D4
= si �

Z 1

0

@SuT
@xi

����
t�s
dt

(23)
= si �

Z 1

0

@
�P

`2T x`
jT j

�
@xi

������
t�s

dt

= si �
Z 1

0

1

jT j

����
t�s
dt =

si
jT j

(1),(4)
= si � Shi (uT ) :

12



If i 2 N n T; we have @SuT=@xi = 0 and therefore AS (SuT � �s) (Ai) = 0 = si � Shi (uT ) ;
which concludes the proof.

Appendix E. Proof of Theorem 11

In the following, we use the formula for SS from Theorem 10. Existence: The non-
negatively weighted solution SS inherits Mo from Sh (Young, 1985). It is well-known that
Sh is symmetric: for all i; j 2 N and v 2 V such that i and j are symmetric in v; we have
Shi (v) = Shj (v) : This implies that SS satis�es S�: Any two players in a partnership are
symmetric. This implies that SS satis�es PP. Property SE is immediate from its de�nition.
Uniqueness: We mimic the basic idea of Young�s (1985, Theorem 2) proof. Let the

non-negatively weighted value ' obey SE, S�, PP, andMo. For all v 2 V; set

T (v) := fT � N j T 6= ; and �T (v) 6= 0g : (E.1)

We show ' = SS by induction on jT (v)j :
Induction basis: Let jT (v)j = 0; i.e., v = 0. The coalition N is a partnership for 0. For

s 2 RN+ such that s` = 0 for all ` 2 N; we have 'i (0; s) = 0 = SSi (0; s) for all i 2 N by SE
and S�: Let now s 2 RN+ be such that sk > 0 for some k 2 N: By PP, we have

si � 'j (0; s) = sj � 'i (0; s) for all i; j 2 N: (E.2)

Summing up (E.2) over j 2 N gives

0
SE
= si �

X
j2N

'j (0; s)
(E.2)
= 'i (0; s) �

X
j2N

sj:

Since
P

j2N sj > 0; we have 'i (0; s) = 0 = SSi (0; s) for all i 2 N:
Induction hypothesis (IH): Suppose ' (v; s) = SS (v; s) for all v 2 V and s 2 RN+ such

that jT (v)j � t:
Induction step: Fix now v 2 V and s 2 RN+ such that jT (v)j = t + 1: Set T (v) :=T

T2T (v) T: Let i 2 N nT (v) and T 2 T (v) such that i 2 N nT . Set w := v��T (v) �uT :We
have v (S [ fig) � v (S) = w (S [ fig) � w (S) for all S � N n fig and jT (w)j = t: Hence,
we obtain

'i (v; s)
Mo
= 'i (w; s)

IH
= SSi (w; s)

Mo
= SSi (v; s) for all i 2 N n T (v) : (E.3)

By construction, T (v) is a partnership for v; which implies that any two players in T (v) are
symmetric. If s` = 0 for all ` 2 T (v) ; we obtain

'i (v; s)
SE,S�
=

Sv (s)�
P

`2NnT (v) '` (v; s)

jT (v)j
(E.3)
=

Sv (s)�
P

`2NnT (v) SS` (v; s)

jT (v)j
SE,S�
= SSi (v; s) (E.4)
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for all i 2 T (v) :
Let now s 2 RN+ be such that sk > 0 for some k 2 T (v) : By PP, we have

si � 'j (v; s) = sj � 'i (v; s) for all i; j 2 T (v) : (E.5)

Summing up (E.5) over j 2 T (v) gives

si �
X
j2T (v)

'j (v; s) = 'i (v; s) �
X
j2T (v)

sj: (E.6)

Since
P

j2T (v) sj > 0; we obtain

'i (v; s)
(E.6)
=

siP
j2T (v) sj

�
X
j2T (v)

'j (v; s)

SE,(E.3),(E.4)
=

siP
j2T (v) sj

�

0@Sv (s)� X
`2NnT (v)

SS` (v; s)

1A
(25)
= SSi (v; s) ;

which concludes the proof.

Appendix F. Non-redundance in Theorem 11

The non-negatively weighted solution 'SE given by 'SEi (v; s) := 0 for all v 2 V; s 2 RN+ ;
and i 2 N satis�es all properties but SE. Let � : N ! R be such that

P
`2N � (`) = 0 and

� (i; s) > 0 for some i 2 N: The solution 'S� given by

'S
�

i (v; s) :=

�
SSi (v; s) ; s` > 0 for some ` 2 N;
� (i) ; s` = 0 for all ` 2 N

for all v 2 V; s 2 RN+ ; and i 2 N

satis�es all properties but S�. Let � : N � RN+ ! R be such that
P

`2N � (`; s) = 0 for all
s 2 RN+ ; � (i; s) = � (j; s) for all i; j 2 N and s 2 RN+ such that si = sj; and � (i; s) > 0 for
some i 2 N and s 2 RN+ : The solution 'PP given by 'PPi (v; s) := SSi (v; s) + � (i; s) for all
v 2 V; s 2 RN+ ; and i 2 N satis�es all properties but PP. The solution 'Mo given by

'Mo
i (v; s) :=

8<:
siP
`2N s`

� Sv (s) ;
P
`2N

s` > 0;

0;
P
`2N

s` = 0
for all v 2 V; s 2 RN+ ; and i 2 N

satis�es all properties butMo.
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