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Abstract

We introduce the concepts of the components�second-order productivities in cooperative
games with transferable utility (TU games) with a coalition structure (CS games) and of
the components�second-order payo¤s for one-point solutions for CS games as generalizations
of the players� second-order productivities in TU games and of the players� second-order
payo¤s for one-point solutions for TU games (Casajus, 2021, Discrete Appl. Math. 304, 212�
219). The players�second-order productivities are conceptualized as second-order marginal
contributions, that is, how one player a¤ects another player�s marginal contributions to
coalitions containing neither of them by entering these coalitions. The players�second-order
payo¤s are conceptualized as the e¤ect of one player leaving the game on the payo¤of another
player. Analogously, the components�second-order productivities are conceptualized as their
second-order productivities in the game between components; the components�second-order
payo¤s are conceptualized as their second-order payo¤s in the game between components.
We show that the Owen value is the unique e¢ cient one-point solution for CS games that
re�ects the players�and the components�second-order productivities in terms of their second-
order payo¤s.

Keywords: TU game, Shapley value, Owen value, second-order marginal contributions,
second-order payo¤s
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1. Introduction

A cooperative game with transferable utility for a �nite player set (TU game or simply
game) is given by a coalition function that assigns a worth to any coalition (subset of the
player set), where the empty coalition obtains zero. (One-point) solutions for TU games
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assign a payo¤ to any player in any TU game. The Shapley value (Shapley, 1953) probably
is the most eminent one-point solution concept for TU games. And its characterization by
Young (1985) probably is its most important one.
Young (1985) characterizes the Shapley value by three properties of solutions: e¢ ciency,

symmetry, and marginality or strong monotonicity. E¢ ciency: the players� payo¤s sum
up to the worth generated by the grand coalition. Symmetry: equally productive1 players
obtain the same payo¤. Marginality: a player�s payo¤only depends on her own productivity.
Strong monotonicity: whenever a player�s productivity in a game weakly increases so does
her payo¤. Note that strong monotonicity implies marginality. This result indicates that
the Shapley value is the e¢ cient solution that re�ects the players�productivities by their
payo¤s.
The organization of players into groups can be modelled by coalition structures� partitions

of the player set. Games enriched with a coalition structure are addressed as CS games and
the corresponding solutions as CS solutions. Owen (1977) generalizes of the Shapley value
into an e¢ cient CS solution where the components of the coalition structure are treated
like players.2 Khmelnitskaya and Yanovskaya (2007) provide a characterization of the Owen
value that breathes the spirit of Young�s (1985) characterization of the Shapley value.3 This
characterization uses four properties: e¢ ciency, marginality, symmetry within components,
and symmetry across components. Symmetry across components: components that are
equally productive in the game between components obtain the same sum of payo¤s of their
members.
Recently, Casajus (2021) suggests a second-order version of Young�s (1985) characteri-

zation of the Shapley value. This characterization is based on the notions of the players�
second-order productivities and second-order payo¤s. A player�s second-order productivity
with respect to another player re�ects how the former a¤ects the latter player�s marginal
contribution to coalitions containing neither of them by entering these coalitions; a player�s
second-order payo¤ with respect to another player re�ects how the former a¤ects the lat-
ter player�s payo¤ by leaving the game. The Shapley value is the unique e¢ cient solution
the re�ects the players�second-order productivities in terms of their second-order payo¤s.
More precisely, it is the unique solution that satis�es e¢ ciency and second-order versions of
symmetry and marginality. Second-order symmetry: players who are equally second-order
productive with respect to a third player obtain the same second-order payo¤ with respect
to this third player. Second-order marginality: a player�s second-order payo¤ with respect
to another player only depends on her own second-order productivity with respect to this
other player.

1In this paper, a player�s productivity in a game refers to her in�uence on the generation of worth as
expressed by her marginal contributions to coalitions not containing her, that is, the di¤erences between the
worth generated after she entered such a coalition and the worth generated before she entered.

2Alternative e¢ cient CS solutions have been suggested by Kamijo (2009) and Alonso-Meijide et al. (2014),
for example. Alternative non-e¢ cient CS solutions have been suggested by Aumann and Drèze (1974), Owen
(1982), and Alonso-Meijide and Fiestras-Janeiro (2002), for example.

3Alternative characterizations of the Owen value have been suggested by Owen (1977) himself, Hart and
Kurz (1983), Calvo et al. (1996), Hamiache (2001), Albizuri (2008), and Casajus (2010), for example.
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In this paper, we suggest a second-order version of Khmelnitskaya and Yanovskaya�s
(2007) characterization of the Owen value. In particular, we show that the Owen value is
the unique CS solution that satis�es e¢ ciency, second-order marginality, and second-order
versions of symmetry within components and symmetry across components. (Theorem 10).
Second-order symmetry within components is just the restriction of second-order symmetry
to players within the same component. Second-order symmetry across components: com-
ponents that are equally second-order productive in the game between components obtain
the same sum of second-order payo¤s of their members. This result is partly based on
three facts. Second-order marginality implies marginality (Proposition 6). E¢ ciency and
second-order symmetry within components imply symmetry within components (Proposi-
tion 7). E¢ ciency and second-order symmetry across components imply symmetry across
components (Proposition 9).
The remainder of this paper is organized as follows. In Section 2, we provide basic

de�nitions and notation. In Section 3, we survey the characterizations of the Shapley value
by Young (1985) and by Casajus (2021). In Section 4, we �rst survey the characterization
of the Owen value by Khmelnitskaya and Yanovskaya (2007). Then, we provide our second-
order approach to the Owen value. Some remarks conclude the paper.

2. Basic de�nitions and notation

Let the universe of players U be a countably in�nite set, and let N denote the set of all
�nite subsets of U. The cardinalities of S; T;N 2 N are denoted by s; t; and n; respectively.
A (�nite TU) game for the player set N 2 N is given by a coalition function v : 2N ! R,
v (;) = 0; where 2N denotes the power set of N . Subsets of N are called coalitions; v (S)
is called the worth of coalition S. The set of all games for N is denoted by V (N); the set
of all games is denoted by V :=

S
N2N V (N) :

ForN 2 N , T � N; and v 2 V (N), the subgame vjT 2 V (T ) is given by vjT (S) = v (S)
for all S � T ; for i 2 N and S � N; we occasionally write v�i and v�S instead of vjNnfig
and vjNnS; respectively. For N 2 N , v; w 2 V (N) ; and � 2 R, the coalition functions
v +w 2 V (N) and � � v 2 V (N) are given by (v + w) (S) = v (S) +w (S) and (� � v) (S) =
� � v (S) for all S � N: For T � N; T 6= ;; the game uNT 2 V given by uNT (S) = 1 if T � S
and uNT (S) = 0 otherwise is called a unanimity game. Any v 2 V (N) ; N 2 N can be
uniquely represented by unanimity games. In particular, we have

v =
X

T�N :T 6=;

�T (v) � uNT ; (1)

where the coe¢ cients �T (v) are known as the Harsanyi dividends (Harsanyi, 1959) and can
be determined recursively by

�T (v) := v (T )�
X

S(T :S 6=;

�S (v) : (2)

Players i; j 2 N are called symmetric in v 2 V (N) if v (S [ fig) � v (S) = v (S [ fjg) �
v (S) for all S � N n fi; jg :
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A rank order of N 2 N is a bijection � : N ! f1; 2; : : : ; jN jg with the interpretation
that i is the � (i)th player in �; the set of rank orders of N is denoted by R (N) : The
set of players before i in � is denoted by Bi (�) := f` 2 N : � (`) < � (i)g : The marginal
contribution of i in � and v 2 V (N) is denoted by

MCvi (�) := v (Bi (�) [ fig)� v (Bi (�)) : (3)

A solution for V is an operator that assigns to any N 2 N , v 2 V (N) ; and i 2 N a
payo¤ 'i (v) : The Shapley value (Shapley, 1953) for V, Sh, is given by

Shi (v) :=
X

T�N :i2T

�T (v)

t
=

X
S�Nnfig

v (S [ fig)� v (S)
n �
�
n�1
s

� =
X
�2R

1

jR (N)j �MC
v
i (�) (4)

for all N 2 N ; v 2 V (N) ; and i 2 N:
For N 2 N ; let P (N) denote the set of all partitions (coalition structures) of N ; the

component of player i 2 N in P 2 P (N) is denoted by P (i) : For N 2 N ; P 2 P (N) ;
T � N and i 2 N; let P (T ) � P be given by P (T ) := fP 2 P j T \ P 6= ;g, let PjT 2 P (T )
be given by PjT := fT \ P j P 2 P (T )g ; let P�T 2 P (N n T ) be given by P�T := PjNnT ;
and let P�i 2 P (N n fig) be given by P�i := P�fig:
A CS game for N 2 N is a pair (v;P), where v 2 V (N) and P 2 P (N) : Let VP (N)

denote the set of all CS games for N and let VP := [N2NVP (N) denote the set of all
CS games.
A (CS) solution for VP is an operator ' that assigns to any N 2 N , i 2 N , and

(v;P) 2 VP (N) a payo¤ 'i (v;P) ; for P 2 P ; we set 'P (v;P) =
P

i2P 'i (v;P) : For
N 2 N and P 2 P (N) ; the set of all rank orders that respect P is denoted by

R (N;P) := f� 2 R (N) j for all P 2 P and i; j 2 P : j� (i)� � (j)j < jP jg ;

that is, in any such rank order, the players from any component follow each other without
players from other components between them. The Owen value (Owen, 1977) for VP, Ow,
is the CS solution given by

Owi (v;P) :=
X

T�N :i2T

�T (v)

jP (i) \ T j � jP (T )j (5a)

=
X

C�PnfP(i)g

X
S�P(i)nfig

v

 
S [ fig [

[
C2C
C

!
� v

 
S [

[
C2C
C

!

jP (i)j �
�jP(i)j�1

s

�
� jPj �

�
jPj � 1
jCj

� (5b)

=
X

�2R(N;P)

1

jRj �MC
v
i (�) (5c)

for all N 2 N , i 2 N , and (v;P) 2 VP (N) :
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Fix an injection { : N ! U; N 7! {N for N 2 N : For any N 2 N , P 2 P (N) ; and
v 2 V (N) ; set [P ] := f{P j P 2 Pg and let vP 2 V ([P ]) be given by

vP ([C]) := v
 [
C2C
C

!
for all C � P : (6)

The TU game vP is called the game between components or intermediate game for
the CS game (v;P). For N 2 N ; (v;P) 2 VP (N), and P 2 P ; we have

OwP (v;P) = Sh{P (vP) : (7)

3. The Shapley value4

The marginal contributions of a player i 2 N; N 2 N in the game v 2 V (N) given as

v (S [ fig)� v (S) ; S � N n fig (8)

indicate her (individual) productivity or contribution to the generation of worth in the game
v: The right-hand formula of the Shapley value in (4) indicates that the players�Shapley
value payo¤s re�ects their productivities in games as expressed by their own marginal con-
tributions. Young (1985) shows that the Shapley value is the unique e¢ cient such solution.

E¢ ciency, E. For all N 2 N and v 2 V (N) ; we have
P

`2N '` (v) = v (N) :

Symmetry, S. For all N 2 N , v 2 V (N) ; and i; j 2 N such that i and j are symmetric in
v; we have 'i (v) = 'j (v) :

Marginality, M. For all N 2 N , v; w 2 V (N) ; and i 2 N such that v (S [ fig)� v (S) =
w (S [ fig)� w (S) for all S � N n fig ; we have 'i (v) = 'i (w).

Theorem 1 (Young, 1985). The Shapley value is the unique solution for V that satis�es
e¢ ciency (E), symmetry (S), and marginality (M).5

Symmetry and marginality can be paraphrased as follows. Symmetry: players who are
equally productive in a game should obtain the same payo¤. Marginality: a player who is
equally productive in two games should obtain the same payo¤ in these games. Therefore, a
solution that is intended to re�ect the players�productivities should satisfy these properties.
Later on, Casajus (2021) introduces the notions of the players�second-order productiv-

ities and second-order payo¤s. Second-order productivities are conceptualized as second-
order marginal contributions: the second-order marginal contributions of player i 2 N;
N 2 N with respect to player j 2 N n fig in a game v 2 V (N) are given as

[v (S [ fi; jg)� v (S [ fig)]� [v (S [ fjg)� v (S)] ; S � N n fi; jg : (9)

4This section partly follows Casajus (2021).
5Originally, Young (1985) invokes anonymity (called symmetry by him) instead of symmetry (in our

parlance). Although anonymity is stronger than symmetry, it is well-known and easy to check that anonymity
can be replaced with symmetry in his characterization. Moreover, his characterization works on �xed player
sets.
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These describe how player i a¤ects the productivity of player j:6 The second-order payo¤ of
player i 2 N; N 2 N with respect to player j 2 N n fig in a game v 2 V (N) is given by

'j (v)� 'j (v�i) :

It describes how player i a¤ects the payo¤ of player j.7

Based on these notions, Casajus (2021) motivates natural second-order versions of sym-
metry and marginality. For all N 2 N ; v 2 V (N) ; and i; j; k 2 N; i 6= j 6= k 6= j; players i
and j are called second-order symmetric with respect to player k if

[v (T [ fi; kg)� v (T [ fig)]� [v (T [ fkg)� v (T )]
= [v (T [ fj; kg)� v (T [ fjg)]� [v (T [ fkg)� v (T )]

for all T � N n fi; j; kg :
Second-order symmetry, 2S. For all N 2 N ; v 2 V (N) and i; j; k 2 N; i 6= j 6= k 6= j
such that players i and j are second-order symmetric with respect to player k; we have

'k (v)� 'k (v�i) = 'k (v)� 'k (v�j) :

Second-order marginality, 2M. For all N 2 N ; v; w 2 V (N) and i; j 2 N; i 6= j such
that

[v (T [ fi; jg)� v (T [ fig)]� [v (T [ fjg)� v (T )]
= [w (T [ fi; jg)� w (T [ fig)]� [w (T [ fjg)� w (T )]

for all T � N n fi; jg ; we have

'j (v)� 'j (v�i) = 'j (w)� 'j (w�i) :

Second-order symmetry and second-order marginality can be paraphrased as follows.
Second-order symmetry: players who are equally second-order productive with respect to a
third player in a game should be assigned the same second-order payo¤ with respect to the
latter. Second-order marginality: a player who is equally second-productive with respect
to a another player in two games should be assigned the same second-order payo¤ with
respect to the latter in these games. Therefore, it seems to be plausible that a solution the
second-order payo¤s of which are intended to re�ect the players�second-order productivities
satis�es these properties.
It turns out that the Shapley value re�ects the players�second-order productivities in

terms of their second-order payo¤s in the same vein as it re�ects the players�(�rst-order)
productivities in terms of their (�rst-order) payo¤s.

6The second-order marginal contributions of player i to player j in the game v equal player j�s con-
tributions to player i: Often, these are referred to as the second-order derivative of v with respect to i
and j:

7Second-order (and higher-order) Casajus and Huettner (2018, De�nition 9) introduce second-order (and
higher-order) payo¤s as second-order (and higher-order) contributions.
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Theorem 2 (Casajus, 2021). The Shapley value is the unique solution for V that satis�es
e¢ ciency (E), second-order symmetry (2S), and second-order marginality (2M).

The proof of this theorem uses the fact that second-order marginality implies marginality,
the proof of which is rather short.

Proposition 3 (Casajus, 2021). If a solution for V satis�es second-order marginality
(2M), then it satis�es marginality (M).

Nevertheless, the proof of Theorem 2 is much more involved than the proof of Theorem 1
due to use of second-order symmetry instead of symmetry.
On the one hand, second-order symmetry does not inply symmetry (Casajus, 2021, Re-

mark 3). On the other hand, the counterexamples in Casajus (2021, Remark 3) fail e¢ ciency.
As our �rst result, we show that the proof of Theorem 2 can be simpli�ed substantially by
providing a rather short proof that e¢ ciency and second-order symmetry imply symmetry.

Proposition 4. If a solution for V satis�es second-order symmetry (2S) and e¢ ciency (E),
then it satis�es symmetry (S).

Proof. Let the solution ' satisfy 2S and E. For jN j = 1; nothing is to show. Let now
jN j > 1. Let (*) i; j 2 N; i 6= j; N 2 N be symmetric in v 2 V (N) : Fix h 2 U n N , set
M := N [ fhg ; and let w 2 V (M) be given by

w =
X

T�N :T 6=;

�T (v) � uMT

+
X

T�Nnfi;jg

�
�T[fig (v) � uMT[fhg + �T[fi;jg (v) � uMT[fi;hg + �T[fi;jg (v) � uMT[fj;hg

�
;

that is, a player h is added to v such that (**) i and j remain symmetric in w; (***) h is
symmetric to both i and j in w; and (****) w�h = v:
Since i and j are symmetric in w, they are second-order symmetric with respect to any

k 2M n fi; jg in w: Hence, we have

'k (w�i)
2S
= 'k (w�j) for all k 2M n fi; jg : (10)

Now, we obtain

'j (w�i)
E
= w�i (M n fig)�

X
k2Nnfi;jg

'k (w�i)

(**),(10)
= w�j (M n fjg)�

X
k2Nnfi;jg

'k (w�j)

E
= 'i (w�j) :
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In view of (***), we analogously obtain

'j (w�h) = 'h (w�j) and 'i (w�h) = 'h (w�i) : (11)

Finally, we have

'i (v)
(****)
= 'i (w�h)

(11)
= 'h (w�i)

(10)
= 'h (w�j)

(11)
= 'j (w�h)

(****)
= 'j (v) ;

which concludes the proof. �

4. The Owen value

In this section, we �rst survey the characterization of the Owen value by Khmelnitskaya
and Yanovskaya (2007). Then, we provide a second-order version of this characterization
similar to the second-order characterization of the Shapley value by Casajus (2021) as sur-
veyed in Section 3.

4.1. The (�rst-order) characterization by Khmelnitskaya and Yanovskaya (2007)

Khmelnitskaya and Yanovskaya (2007) generalize the characterization of the Shapley
value due to Young (1985). This characterization indicates that the Owen value is the
unique e¢ cient CS solution that re�ects both the players�and the components�(�rst-order)
productivities in terms of the players�(�rst-order) payo¤s.8

E¢ ciency, E. For all N 2 N and (v;P) 2 VP (N) ; we have
P

`2N '` (v;P) = v (N) :
Marginality, M. For allN 2 N , (v;P) ; (w;P) 2 VP (N) ; and i 2 N such that v (S [ fig)�
v (S) = w (S [ fig)� w (S) for all S � N n fig ; we have 'i (v;P) = 'i (w;P).
Symmetry within components, SwC. For all N 2 N , (v;P) 2 VP (N) ; P 2 P, and
i; j 2 P such that i and j are symmetric in v; we have 'i (v) = 'j (v) :
For all N 2 N and (v;P) 2 VP (N) ; the components P;Q 2 P are called symmetric in

(v;P) ; if

v

 
P [

[
C2C
C

!
� v

 [
C2C
C

!
= v

 
Q [

[
C2C
C

!
� v

 [
C2C
C

!
for all C � P n fP;Qg ; that is, if and only if the representatives of P and Q are symmetric
in the intermediate game vP :

Symmetry across components, SaC. For all N 2 N , (v;P) 2 VP (N), and P;Q 2 P
such that P and Q are symmetric in (v;P) ; we have 'P (v;P) = 'Q (v;P) :

8Recently, Hu (2021, Theorem 3.2) kind of rediscovered this characterization. Instead of marginality, he
uses coalitional strategic equivalence (Chun, 1989). Nowadays, however, it is well understood that coalitional
strategic equivalence is equivalent to marginality (see, for example, Casajus, 2011, Footnote 3). Coalitional
strategic equivalence: For all N 2 N ; T � N; T 6= ;; i 2 N n T; � 2 R; and v 2 V (N) ; we have
'i (v) = 'i

�
v + � � uNT

�
:
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E¢ ciency and marginality are just the CS versions of the properties for (TU) solutions
with the same name and with the same interpretation. Symmetry within components is a
natural relaxation of symmetry within the CS framework. Symmetry across components
treats the components as players: equally productive components should obtain the same
payo¤ as expressed by the sum of their members�payo¤s. Moreover, both symmetry within
components and symmetry across component can be viewed as generalizations of symmetry.
Whereas the former is equivalent to symmetry for the trivial coalition structure fNg ; the
latter is so for the atomistic coalition structure ffig j i 2 Ng :

Theorem 5 (Khmelnitskaya and Yanovskaya, 2007). The Owen value is the unique
CS solution for VP that satis�es e¢ ciency (E) symmetry within components (SwC), sym-
metry across components (SaC), and marginality (M).

4.2. A second-order characterization
In this subsection, we simultaneously translate the second-order characterization of the

Shapley value to CS solutions and the (�rst-order) characterization of the Owen value to
the second-order framework.

Second-order marginality, 2M. For all N 2 N ; (v;P) ; (w;P) 2 VP (N) ; and i; j 2 N;
i 6= j such that

[v (T [ fi; jg)� v (T [ fig)]� [v (T [ fjg)� v (T )]
= [w (T [ fi; jg)� w (T [ fig)]� [w (T [ fjg)� w (T )]

for all T � N n fi; jg ; we have

'j (v;P)� 'j (v�i;P�i) = 'j (w;P)� 'j (w�i;P�i) :

In essence, this property is just a restatement of second-order marginality for TU games,
where the coalition structure is �xed but can be ignored otherwise. Therefore, the proof of
Proposition 3 runs through smoothly within the framework of CS games and we obtain

Proposition 6. If a solution for VP satis�es second-order marginality (2M), then it satis-
�es marginality (M).

Second-order symmetry within components, 2SwC. For all N 2 N ; (v;P) 2 VP (N) ;
P 2 P ; i; j 2 P; and k 2 N n P such that i and j are second-order symmetric with respect
to k in v; we have

'k (v;P)� 'k (v�i;P�i) = 'k (v;P)� 'k (v�j;P�j) :

This property restricts second-order symmetry for TU games to players within the same
component. Yet, the coalition structure can be ignored regarding the third player to whom
the second-order marginal contributions and the second-order payo¤s are related. The proof
of Proposition 4 essentially runs through smoothly with second-order symmetry within com-
ponents instead of symmetry within components and symmetry within components instead
of symmetry: one just has to put player h into the component containing players i and j:
Hence, we obtain

9



Proposition 7. If a solution for V satis�es strong second-order symmetry within compo-
nents (2SwC) and e¢ ciency (E), then it satis�es symmetry within components (SwC).

In order to obtain a second-order version of symmetry across components, we �rst provide
the notion of second-order symmetry of components. For all N 2 N ; (v;P) 2 VP (N) ; and
A;B;C 2 P pairwise di¤erent, components A and B are called second-order symmetric
with respect to component C in (v;P) if"

v

 
C [ A [

[
D2D

D

!
� v

 
A [

[
D2D

D

!#
�
"
v

 
C [

[
D2D

D

!
� v

 [
D2D

D

!#

=

"
v

 
C [B [

[
D2D

D

!
� v

 
B [

[
D2D

D

!#
�
"
v

 
C [

[
D2D

D

!
� v

 [
D2D

D

!#

for all D � P n fA;B;Cg :

Remark 8. Note that the components A and B are second-order symmetric with respect
to component C in (v;P) if and only if their representatives {A and {B are second-order
symmetric with respect to the representative {C of component C in the intermediate game vP .

Second-order symmetric components are equally second-order productive with respect
to a third component. Therefore, if a CS solution is intended to re�ect the components�
second-order productivities in terms of their second-order payo¤s, it seems to be plausible
that the second-order payo¤s of second-order symmetric components are the same.

Second-order symmetry across components, 2SaC. For all N 2 N ; (v;P) 2 VP (N) ;
and A;B;C 2 P pairwise di¤erent such that A and B are second-order symmetric with
respect to C in v; we have

'C (v;P)� 'C (v�A;P�A) = 'C (v;P)� 'C (v�B;P�B) :

Using the general idea of the proof of Proposition 4 one shows that second-order sym-
metry across components and e¢ ciency imply symmetry across components.

Proposition 9. If a solution for VP satis�es second-order symmetry across components
(2SaC) and e¢ ciency (E), then it satis�es symmetry across components (SaC).

Proof. Let the CS solution ' satisfy 2SaC and E. If jPj = 1; then nothing is to show.
Let now N 2 N and (v;P) 2 VP (N) be such that jPj > 1: Moreover, let (*) P;Q 2 P ;
P 6= Q be symmetric in v: Fix h 2 U nN , set M := N [ fhg and Q := P [ ffhgg ; and let
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w 2 V (M) be given by

w =
X

T�N :T 6=;

�T (v) � uMT

+
X

T�Nn(P[Q)

X
S�P :S 6=;

�T[S (v) � uMT[fhg

+
X

T�Nn(P[Q)

X
S�P[Q:S\P 6=;;S\Q6=;

�T[fi;jg (v) � uMT[(SnQ)[fhg

+
X

T�Nn(P[Q)

X
S�P[Q:S\P 6=;;S\Q6=;

�T[fi;jg (v) � uMT[(SnP )[fhg;

that is, fhg is added to (v;P) such that (**) P and Q remain symmetric in (w;Q) ; (***)
fhg is symmetric to both P and Q in w; and (****)

�
w�fhg;Q�fhg

�
= (v;P) :

Since P and Q are symmetric in (w;Q), they are second-order symmetric with respect
to any R 2 Q n fP;Qg in (w;Q) : Hence, we have

'R (w�P ;Q�P )
2SaC
= 'R (w�Q;Q�Q) for all R 2 Q n fP;Qg : (12)

Now, we obtain

'Q (w�P ;Q�P )
E
= w�P (M n P )�

X
R2QnfP;Qg

'R (w�P ;Q�P )

(**),(12)
= w�Q (M nQ)�

X
R2QnfP;Qg

'R (w�Q)

E
= 'P (w�Q;Q�Q) :

In view of (***), we analogously obtain

'Q
�
w�fhg;Q�fhg

�
= 'fhg (w�Q;Q�Q) (13)

and
'P
�
w�fhg;Q�fhg

�
= 'fhg (w�P ;Q�P ) : (14)

Finally, we have

'P (v;P)
(****)
= 'P

�
w�h;Q�fhg

�
(14)
= 'fhg (w�P ;Q�P )

(12)
= 'fhg (w�Q;Q�Q)

(13)
= 'Q

�
w�fhg;Q�fhg

� (****)
= 'Q (v;P) ;

which concludes the proof. �
Propositions 6, 7, and 9, allow us to �transfer�Theorem 5 to the second-order framework.

We obtain
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Theorem 10. The Owen value is the unique CS solution for VP that satis�es e¢ ciency
(E), second-order marginality (2M), second-order symmetry within components (2SwC),
and second-order symmetry across components (2SaC).

Proof. It is well-known that the Owen value satis�es E. Straightforward but tedious calcula-
tions using (5b) show the following formulas for the second-order Owen value payo¤s in terms
of second-order marginal contributions. Let N 2 N ; i; k 2 N; i 6= k; and (v;P) 2 V (N) : If
k 2 P (i) ; then

Owk (v;P)�Owk (v�i;P�i)

=
X

C�PnfP(k)g

X
S�P(i)nfi;kg

266664
v

 
S [ fi; kg [

[
C2C
C

!
� v

 
S [ fig [

[
C2C
C

!

jP (k)j �
�jP(k)j�1

s+1

�
� jPj �

�
jPj � 1
jCj

� : : :

�
v

 
S [ fkg [

[
C2C
C

!
� v

 
S [

[
C2C
C

!

jP (k)j �
�jP(k)j�1

s+1

�
� jPj �

�
jPj � 1
jCj

�
377775 : (15)

If k 2 N n P (i) ; then

Owk (v;P)�Owk (v�i;P�i)

=
X

C�PnfP(k);P(i)g

X
S�P(k)nfkg

266664
v

 
S [ fkg [ P (i) [

[
C2C
C

!
� v

 
S [ P (i) [

[
C2C
C

!

jP (k)j �
�jP(k)j�1

s

�
� jPj �

�
jPj � 1
jCj+ 1

� : : :

�
v

 
S [ fkg [ (P (i) n fig) [

[
C2C
C

!
� v

 
S [ (P (i) n fig) [

[
C2C
C

!

jP (k)j �
�jP(k)j�1

s

�
� jPj �

�
jPj � 1
jCj+ 1

�
377775 : (16)

From (15) and (16) it is immediate that the Owen value satis�es 2M and 2SwC. By Re-
mark ?? and in view of the well-known fact that the Owen values satis�es IG, it also satis�es
2SaC.
Let the CS solution ' satisfy E, 2M, 2SwC, and 2SaC. By Propositions 6, 7, and 9,

the CS solution ' satis�esM, SwC, and SaC. By Theorem 5, we have ' = Ow. �

Remark 11. The characterization in Theorem 10 is non-redundant for jN j > 1. The zero
CS solution, Z; given by Zi (v;P) := 0 for all N 2 N ; (v;P) 2 VP (N) ; and i 2 N satis�es
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all properties but e¢ ciency. The component egalitarian CS solution, CE; given by

CEi (v;P) :=
v (N)

jP (i)j � jPj

for all N 2 N ; (v;P) 2 VP (N) ; and i 2 N satis�es all properties but marginality. Fix a
bijection % : U! N: For any N 2 N and P 2 P (N) ; let

R (N;P ; %)
:= f� 2 R (N;P) j for all P 2 P and i; j 2 P : � (i) > � (j) if and only if % (i) > % (j)g :

The %-Owen value, Ow%; given by

Ow%i (v;P) :=
X

�2R(N;P;%)

MCvi (�)

for all N 2 N ; (v;P) 2 VP (N) ; and i 2 N satis�es all properties but second-order symmetry
within components. The Shapley value for CS games ignoring the coalition structure satis�es
all properties but second-order symmetry across components.

5. Concluding remarks

In this paper, we suggest a characterization of the Owen value indicating that the latter is
the unique e¢ cient CS solution that re�ects the players�and components�second-order pro-
ductivities in terms of their second-order payo¤s. The natural question now arises whether
this may hold true for higher-order productivities and higher-order payo¤s. In view of the
results of Casajus (2020, Appendix A), the Owen value should satisfy the corresponding
higher-order properties, whereas not being the unique e¢ cient CS solution to do so.
Winter (1989) generalizes the Owen value to games enriched with a level structure, that

is, a �nite sequence of coalition structures becoming successively �ner. Khmelnitskaya and
Yanovskaya (2007, Theorem 2) indicate how their characterization can be extended to this
level structure value. We leave it to the reader to provide the obvious extension of our
characterization of the Owen value to that level structure value.
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